

Wheat for distilling and bioethanol: Developments in 2007

Richard Weightman, ADAS Boxwort WIGN Stakeholder meeting 29/11/0

www.adas.co.uk

Agenda

- Development in the biofuels market
- Progress understanding variety effects
- Alcohol productivity and N effects
- Summary of projects completed in 2007
- New bioethanol projects

Planned UK bioethanol plants

Planned UK bioethanol plants

<u>Company</u>	Req for wheat (kt)	Predicted EtOH prod (kt)	Expected
GSF (1)	350	105	Late 2008
GSF (2)	700	210	Late 2009
Roquette	300	100	Late 2008
Bioethanol	Ltd 325	100	2008 ??
Vireol	500	150	2008
Losonoco	360	110	2008
Ensus	1,000	325	Late 2008
BP/ABF	1,000	330	Late 2009
Total	4,535	1,430	
British Suga	ar -	55	Late 2007

Spain - Abengoa

- Plans next year for purchase of 250,000 tonnes of UK wheat under contract
- An existing market which justifies understanding the quality of wheat for bioethanol

Will premia be paid for high AY ?

- **US Monsanto/FOSS**
- Significant developments in 2007

UK- Centaur Sweden – Agroetanol Spain - Abengoa

Sweden – Agroetanol

Protein: 9-11%

Moisture: below 15% at harvest (or 14.5% post harvest) no correction

Specific weight: over 750 g/l no correction Starch: up to 71.0% = base price

- From 71.1% added payment of 1.5% per % starch
- 71.1-71.5% starch = +0.75%
- 71.6-72.0% starch = +1.5% etc

UK Centaur bioethanol contract

Starch premium

- Basic starch content 60% (no premium)
- Premium £0.25 per 0.5% starch (up to max of 70% starch)

... assume these are on an 'as is' basis (85%DM)

Previous WIGN meeting 2006

- What drives alcohol yield ?
- Measuring and Predicting alcohol yield
- Effects of Variety
- Environmental influences

Wheat: benchmark analysis

Varieties and starch vs protein

Source: Moss et al. (1999) HGCA report 182

Varietal effects on alcohol-protein relationship

We assume the alcohol yield:protein relationship is the same for all varieties

[Data: SWRI, 2005; analysis DK]

Variety effects

Why do some varieties consistently outperform in terms of alcohol yield ?

Assessing wheat varieties for alcohol yield

Why is Riband a good distilling wheat ?

Riband – good, traditional soft distilling variety

Kindred et al. 2007, J. Cer. Sci doi 10.1016/j.jcs.2007.07.010

Why is Riband a good distilling wheat ?

Riband – 3% higher starch content at a giver level of protein

Kindred et al. 2007, J. Cer. Sci doi 10.1016/j.jcs.2007.07.010

Summary of variety effects

Alaphal viold (L/t)	Option	Riband	sig (***)
Starch (g/100g)	445	454	()
	69.9	73.0	(***)
Total protein (g/100g)	9.93	9.63	(*)
TGW (g)	44.8	50.0	(***)
Grain width (mm)	3.9	4.2	(***)
Grain <i>I:w</i> ratio	1.72	1.62	(***)
Vitreous grains (%)	16.3	12.2	(ns)
Alcohol/starch (L/10kg)	6.37	6.23	(*)
Gliadin (%)	42.5	40.9	(*)

Conclusions: Riband

High alcohol yield in Riband associated with:

- More starch at a given level of protein
- Large well filled grains
- Small grain I:w ratio
- No interactions between variety and N for any trait

but...

Glasgow (good distilling wheat) does not have large grain

Variety effects

 More work required to understand variety effects.....

Sustainable biofuel production

Alcohol yield per tonne, or per hectare ?

Alcohol yield/ha driven by grain yield

Kindred et al. 2007, J. Cer. Sci doi 10.1016/j.jcs.2007.07.010

Sustainable biofuel production

- Fertiliser very important for GHG emissions (manufacture & in-field GHG emissions)
- Optimum N rates to maximise GHG savings substantially lower than to optimise yield
- Increasing productivity (e.g. by breeding) will be very important in reducing GHG intensities per t of grain, and getting maximum production off limited land area
- Displacement of agricultural activity onto virgin lands (e.g. forest or grassland) gives enormous CO2 releases

Recently completed ADAS projects on biofuels

HGCA project report No. 417

 Optimising nitrogen applications for wheat grown for the biofuels market

HGCA review No. 61

 Wheat as a feedstock for alcohol production

HGCA review No. 66

 Opportunities and implications of using the co-products from biofuel

production as feeds for livestock

Ongoing: GREEN grain Project

Genetic Reduction of Energy use and Emissions of Nitrogen through cereal production

Traditional Goodness

Ongoing: Grain size and shape

- PhD studentship, University of Manchester
- 'Understanding and predicting the determination of alcohol yield from wheat'

... can such models be adapted to predict alcohol yield

New ADAS projects on bioethanol

D-2005-3176

 Maximising the yield of high value components from wheat by fractionation

D-2006-3314

 Maximising bioethanol yield of UK wheat: Effect of non starch polysaccharides in grain

D-2007-3348

Triticale – opportunities as a low input cereal for bioethanol production

Conclusions

- UK wheat shows potential for high alcohol yields (ca. 480 L/tonne) competitive with US maize
- NIR calibration for alcohol yield well advanced
- Agronomy key to maximising benefits of biofuels by min. GHG emissions
- Breeding for yield important for max alcohol production per hectare (and min GHG/t of grain)
- Breeding for starch content key to producing high quality feed stock

Thank you

Green Grain analytical group, 2007

richard.weightman@adas.co.uk

