Puroindoline Binding to Starch and its Role in Endosperm Texture

Dhan Bhandari, CCFRA Richard Frazier, Reading University

Philip Greenwell Li Day

Background 1

- Endosperm texture determines milling quality, a major quality parameter of wheat grain
- Soft (friable) texture was correlated with ~15kDa starch granule surface protein, termed "friabilin".
- Presence of friabilin controlled by Hardness gene on chromosome 5D short arm
- Friabilin later characterised as puroindolines ("PINs"), very basic proteins
- PIN protein soft alleles remain bound to starch granules as friabilin after water washing
- Hypothesis: friabilin acts as "non-stick" protein

Background 2

Puroindolines

- Iow M_r, 13kDa non-gluten proteins
- cysteine-rich (5 S-S bonds), very basic (pl > 10)
- folding similar to wheat nsLTP with extra inserted amphiphilic loop (Trp domain, up to 5 Trp)
- highly surface active
- Polar lipid binding and foam stabilising properties

Background 3

- Pin genes absent in durum wheat (tetraploid AABB genome)
- Breadwheats (AABBDD) when soft always have the soft "wild type" *Pin* alleles, as when inserted with *T. taushii* (DD) parent
- Hardness in breadwheat is associated with later mutations of *Pin-a* or *-b*
 - Null mutations of either Pin-a or Pin-b
 - Point mutations in *Pin-b*

$Gly \rightarrow$	Ser,	residue no.	46
$Trn \rightarrow$	Ara	"	44

$$Leu \rightarrow Pro, \qquad "60$$

Lys \rightarrow Glu, "45

Amino Acid Substitutions within the Tryptophan Loops of PINs

Puroindoline-a

Puroindoline-b

CE profile of a mixture of three purified PIN-b proteins

CCFRA

Grouping of wheat types based on CE characteristics

Summary 1

- Purification method for PINs developed, based on CMC adsorption/TX114 phase partitioning.
- Structural studies of purified PINs from wheats with different endosperm texture.
- Allelic forms of PIN-b were found and characterised by CE and Mass Spectrometry.
- Analytical method developed for half-grains that allows rapid examination.
- This could be used to screen for endosperm texture of lines during breeding programmes.

Kinetic measurement of PIN binding to a Model Starch Surface using

Surface Plasmon Resonance

How does BIACore Measure this?

He-Ne laser (λ = 632.8 nm) focused on gold surface film, gives dark band at internal reflection angle of photon/electron resonance ("surface plasmons" dissipate energy)

Ligand binding at surface gives **change in resonance angle**, by altering **refractive index** seen by evanescent wave that penetrates surface medium (~500-600 nm)

I - Unbound state II - Bound state

PIN-a Binding Curves

C C F R A

PIN-b Binding Curves

CCFRA

Global Fit Binding Model					
	KA (M ⁻¹)	KD (M)	R _{max} (RU)	Chi ²	
Pin A (crude)	1.66 x 10 ⁶	6.01 x 10 ⁻⁷	7.28	1.08	
Pin A	2.64 x 10 ⁶	3.78 x 10 ⁻⁷	11.9	0.76	
Pin B	2.91 x 10 ⁶	3.44 x 10 ⁻⁷	3.19	0.12	

Conclusions

- Study has demonstrated specific binding interaction between PINs and amylodextrins - a model for the starch granule surface
- This can be studied in a quantitative manner by SPR
- Binding constants for PIN-a and PIN-b were similar
- Amount of bound PIN-b less than third that for PIN-a
- May indicate conformational difference when bound
- Binding supports idea of non-stick coating on granule?

Proposed Studies on Role of PINs

- Further SPR binding studies with purified PINs
 - synergy between wild-type PIN-a and PIN-b?
 - binding of hard allelic forms of PIN-b
 - chemical modification of Trp or Arg in Trp domain

CCFRA

- with 1- and 2-chain dextrins, & other glycans
- the influence of polar lipid in interactions
- Further binding studies on PINs
 - atomic force microscopy
 - isothermal titration calorimetry
 - spectroscopy
- Protein characterisation of PIN b variants
 - 2D PAGE, MS, CD, FT-IR, NMR

PINs in "high-ratio" cake baking – a LINK opportunity?

- Native 'wild type' PINs are known to control the physical chemistry (adhesion) at the starch granule surface
- Increased hydrophobicity at starch surface plays a critical role in known "high-ratio" treatments of flour for cakes (chlorination, acetylation, or heat/moisture)
- Proposed work will extend CCFRA hypothesis, that treatments function mainly by denaturing PINs
- Objective is to devise improved physical flour treatments via improved mechanistic understanding
- This will benefit cake flour manufacturers and bakers through improved production and performance of "clean label" flour

