Identifying future threats: impact on wheat

Mikhail Semenov

Rothamsted Research

Food security and climate change

Wheat production in 2007 was 725 million ton (wheat is the third most-produced cereal after maize and rice, FAO)

Historical temperature variation

Breading for climate change

Identifying future threats

IPCC AR4 predictions for the 2050s

Extreme impact of high temperature

- Heat shock during flowering can result in a high number of sterile grains
- Heat shock shortly after flowering decrease potential size of grains

Rice flowering

Toshi Hasegawa, National Institute for Agro-Environmental Sciences, Japan

Modelling framework: testing wheat performance in target environments

Drought stress decreased

Yield losses due to drought expected on once every 20 years for cv. Avalon

Cultivar		1960-90	2050HI
Avalon	Maturity	8 Aug	18 July

Heat stress at flowering increased

The probability of heat stress at flowering resulting to substantial yield losses for cv. Mercia

Heat stress in Europe

Simulation results suggest that the need for breeding for wheat varieties tolerant to heat stress around flowering is likely to be more pressing for Northern Europe.

Modelling the effect of heat stress on yield

- The number of grain linearly decline, when maximum temperature exceeds a critical value *Tcr* during flowring.
- Wheat can compensate for reduction in grain number by growing larger grains.

(Mitchell et al, 1995; Wheeler et al, 1996)

Post-anthesis heat stress

- •However, high temperature shortly after anthesis can substantially limit a potential kernel weight (hypothesis)
- •Reduction in intercepted radiation due to decrease of grain filling duration for high temperature treatment alone does not explain a decrease in kernel weight
- Tolerance to post-anthesis heat stress is cultivar dependent

(Wardlaw & Moncur, 1995)

Conclusions

- •Prediction of climate change impact on wheat could be counterintuitive as a result of non-linear interactions between crop and environment
- •Modelling provides a powerful technique for rational design of wheat ideotypes, which can underpin breeding for new wheat cultivars for the rapidly changing environments caused by global warming