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Plan

1. Why will carbon in soil change with a
changing environment?

2. What is the carbon doing there anyway?

3. Is wheat—cropped soil a sink for carbon or a source?

4. What can we do about it with wheat?



How do plants affect soil C?

Root exudation

Moderate or exacerbate global environmental
change

Reduce erosion
Stabilise soil carbon



Root input of carbon

Root turnover is estimated at 2 —10 g C kg soil month!
Root exudation is estimated at 0.1 — 5 g C kgt month-?

The soil microbial biomass typically contains at
most 1 g C kg* soil

The monthly inputs from roots are at least one
order of magnitude greater than the size of

the notoriously slow-growing, living component
of soil

Total root C input has been estimated in excess of 2 t ha?! yr!

Grassland Jones 2009; Swinnen 1994



Why do plants put Cin soil?

Phosphorus capture

Nitrogen capture by feeding the microbes
Water capture?

Engineer their physical environment

All of the above?

None of the above?



Phosphorus

Some plants (but not especially wheat) exude large
amounts of organic acids to solubilise P

Wheat may do so via mycorrhizae

C input to soil represents a considerable investment
by the plant: 10% of total productivity



Water release curve
(Fosters arable)
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Moisture release curve in soil growing barley
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Soil organic carbon %

Highfield, 60 years of the same Land-

use
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Perennial Wheat

Table 3
Assumptions of grain yield for annual and perennial wheat on each LMU
in MIDAS
LMU Grain yield {Mg/ha)
Annual wheat Perennial wheat
(1) Poor sands 1.0 0.6
(2) Average sandplain 1.3 1.0
(3) Good sandplam 2.4 1.4
(4) Shallow duplex soil 2.0 1.2
(5) Medium heavy soil 2.0 12
(6) Valley floor soil 13 1.4
(7) Sandy surfaced valley soil 2.1 K
(8) Deep duplex soil 2.1 13

Bell 2008



Mineralizable C (g/kg soil)

Organic C (g/kg soil)

E.G. Gregorich et al./Soil & Tillage Research 47 (1998) 291-302
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C lost
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Non-IOM C as % of 1980 equilibrium content
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How does carbon get to the subsoil?

Direct input from roots

Downward movement
leaching (DOC)
bioturbation (earthworms)
slow burial (was formed there)
rapid burial (trees uprooting, ploughing)

Carbon in the subsoil is more stable than surface SOC



Age of soil carbon
(Broadbalk)
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Cropland Soils: 1350 Mha
[0.4 to 0.8 Gt Clyr]

+ Conservation tillage (100-1000)

+ Cover crops (50-250)

+« Manuring and INM (50-150)

» Diverse cropping systems (50-250)

*  Mixed farming (50-200)

+  Agroforestry (100-200)

Acid savanna soils, 250 Mha in South

America, have a high potential

Restoration of Degraded and
Desertified Soils: 1.1 billion ha
[0.2 to 0.4 Gt Clyr]

»  Erosion control by water
{100-200)

= Erosion control by wind {50-100)

= Afforestation on marginal lands
{50-300)

= Water conservation/harvesting

{100-200)

Range Lands and Grass Lands:
[0.01 to 0.3 Gt Clyr?]*

3.7 billion ha in semi-arid and sub-
humid regions

+ Grazing management (50-150)

*  Improved species (50-100)

= Fire management (50-100)

+  Nutrient management

*Both SOC and SIC are sequestered

Potential of Carbon
Sequestration in
World Soils
[0.4 -1.2 Gt Clyr]

Irrigated Soils: 275 Mha
[0.01 to 0.03 Gt Chyr]*

Using drip/sub-irrigation
Providing drainage (100-200)
Controlling salinity (60-200)
Enhancing water use efficiency/water
conservation (100-200)

\ *Both SOC and SIC are sequestered

I T

‘ig. 2. Ecosystems with a high and attainable soil C sequestration potential are cropland, grazing/range land,
Jegraded/desertified lands, and irrigated soils. Forest soils are included under afforestation of agriculturally
narginal and otherwise degraded/desertified soils. Refarestation of previously forested sites have small additional
s0il C sequestration. The potential of C sequestration of range lands/grassland is not included in the global total
recause part of it is covered under other ecosystems, and there are large uncertainties. Rates of C sequestration
given in parentheses are in kg C/ha per year, are not additive, and are low under on-farm conditions. [Rates are
sited from (2-9, 15, 25, 37-39) and other references cited in the supparting material.]



>

Restoration of Degraded and
Desertified Soils: 1.1 billion ha

[0.2 to 0.4 Gt Ciyr]

« Erosion control by water
(100-200)

 Erosion control by wind (50-100)

« Afforestation on marginal lands
(50-300)

« Water conservation/harvesting
(100-200)




Wheat may

Increase soil C while retrieving P

Exude carbon to maintain aeration status of roots
Stabilise soil C especially at depth

Help restore degraded lands or avoid degradation
further increase soil C if grown all year round

Thanks to:
Chris Watts, Richard Whalley, Kevin Coleman,
Tim Davies, Colin Webster, Gordon Dailey, Nigel Bird
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