

Development of an appropriate variety testing methodology for assessing nitrogen requirements

Roger Sylvester-Bradley¹, Daniel Kindred¹, Sarah Kendall¹ & Sue Welham²

¹ADAS Boxworth & ²Rothamsted Research

HGCA Recommended List[®] winter wheat 2010/11

YIELD, AGRONOMY AND DISEASE RESISTANCE														
RECOMMENDED	P2	*	С	*	P1	P2	P2	P1		С		*	P2	P1
HGCA	Gallant	Xi19	Solstice	Hereward	KWS-Sterling	Panorama	Ketchum	Kingdom	Cordiale	Einstein	Battalion	Marksman	Qplus \$	Invicta
End-use group	nabim			1.11.6		Group		E014/	1.11.6	1.11.6		E014/	_	nabim G
Scope of recommendation	UK	East	UK	UK	UK	UK	UK	E&W	UK	UK	UK	E&W	Sp	UK E
Fungicide treated grain yield (% treate United Kingdom (10.6 t/ha)	99.7	99.3	96.5	87.8	101.9	101.6	101.1	99.6	98.4	98.3	98.1	96.8	96.7	102.7 1
Dry (East) region (10.6 t/ha)	100	100	96.5	89	101.9	101.0	101.1	99.0	99.4	98.3	99.1	98	90.7	102.7
Wet (West) region (10.6 t/ha)	101	97	97	86	102	101	102	102	97	98	98	97	97	103
North region (10.7 t/ha)	96	[98]	95		[1001	99	90	[0/1]	96_	99	95	91	92	[100]
Untreated grain yield (% treated contro	ol in co		ole tria	ls)										, , , , , , , , , , , , , , , , , , ,
United Kingdom	78	77	76	73	79	85	84	77	77	81	84	84	82	85
Agronomic features														
Resistance to lodging without PGR	7.2	4.3	8.0	8.3	6.7	8.1	5.6	6.4	7.7	6.0	6.9	6.9	8.6	7.2
Resistance to lodging with PGR	7.	6.0	8.6	8.4	8.3	8.9	6.6	7.6	8.3	7.2	8.3	8.1	9.1	7.5
Height without PGR (cm)	86	97	97	89	80	92	95	92	83	89	88	88	92	93
Ripening (days +/- Solstice, -ve = early)	-2				0	+1	0	-1	-2	0	0	-2	+2	+3
Resistance to sprouting	[6	[7]	7	[5]	-	[7]	[6]	-	6	6	5	[5]	[6]	
Disease resistance		> 1	4	cri	tei	'la	10	r c	ro	\mathbf{p}	oro	ote	Ct!	ion
Mildew	5.6			5.2	6.5	7.2	8.0	5.8	6.2	0.2	7.6	7.6	4.9	5.7
Yellow rust	4.4	9.0	3.9	5.0	9.0	8.9	3.9	6.4	6.1	5.4	5.7	5.3	6.0	7.6
Brown rust	4.0	5.5	2.9	-				<i>C</i>			=			7.3
Septoria nodorum	[5	5.2	5.3	DU	t n	or	1 e	TOI	r n	Uti	riti	ion]	[7]
Septoria tritici	4.8	4.9	5.1											6.3
Eyespot	6.	5.0	4.9	3.9	6.0	5.2	5.4	4.9	5.3	6.0	7 @	/ @	5.3	5.4
Fusarium ear blight	[6]	6.0	6.0	5.5	[6]	[/]	[8]	[/]	6.0	5.9	5.0	5.0	[6]	[6]
Orange wheat blossom midge				-	-			-					K	-

HYLO Project – Literature Review – Conclusions

'N Use efficiency' is not the right target

- Nor any other ratio, or index
- N efficiency is an <u>additional</u> target to **high yield**

New target: Optimum N, kg/ha

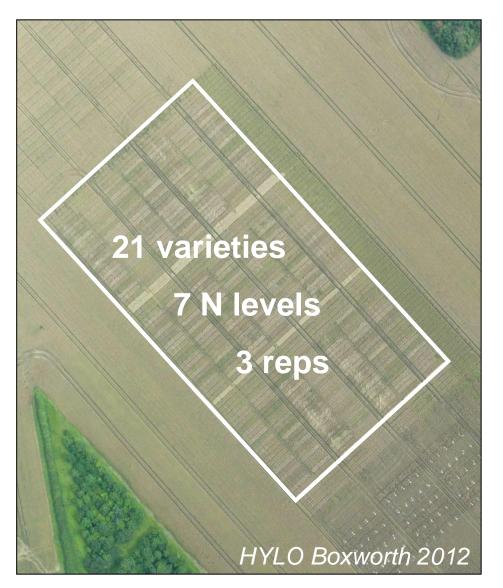
- Determined from multi-level N trials
- Precision of optimum N is poor, so many trials needed
- Need to find new methods or indicative crop traits

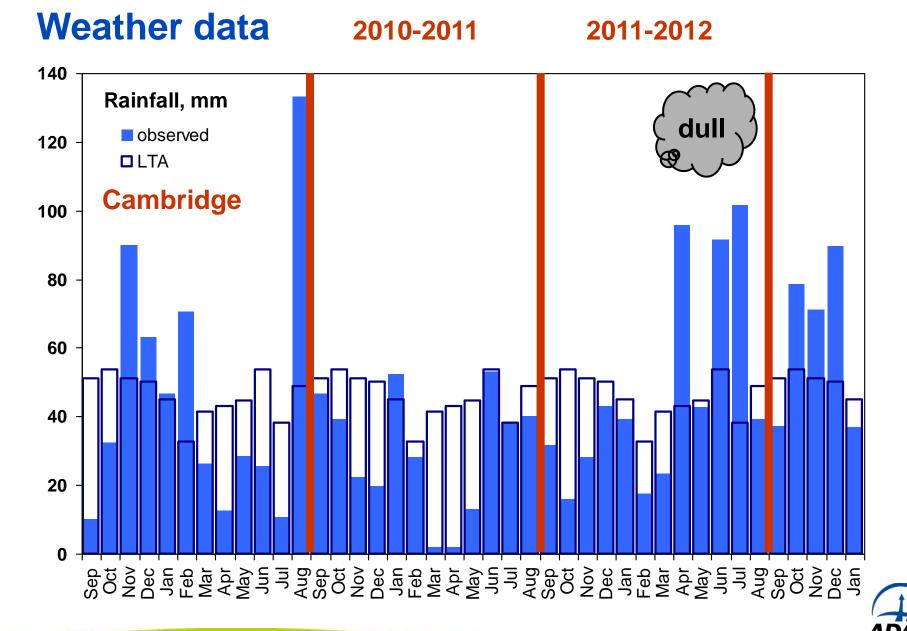
Genetic variation exists

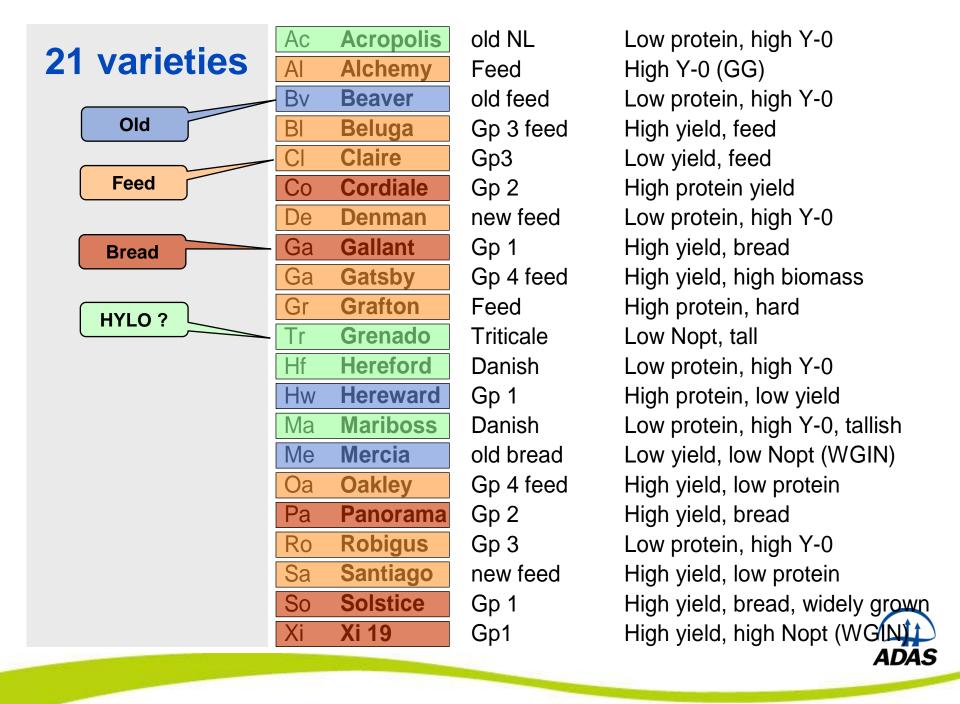
- Especially between species .. e.g. triticale vs. wheat
- But cultivar effects are poorly researched

... best tested with a series of 'HYLO' experiments ...

- 1. Sylvester-Bradley, R. & Kindred, D.R. (2009). Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. *Journal of Experimental Botany* **60**, 1939-1951.
- 2. Kindred, D.J. & Sylvester-Bradley, R. (2010). Routes to reducing the N requirements of high yielding wheat crops. *Aspects of Applied Biology* **105**, *Water and nitrogen use efficiency in plants and crops*, 97-106.






HYLO experiments

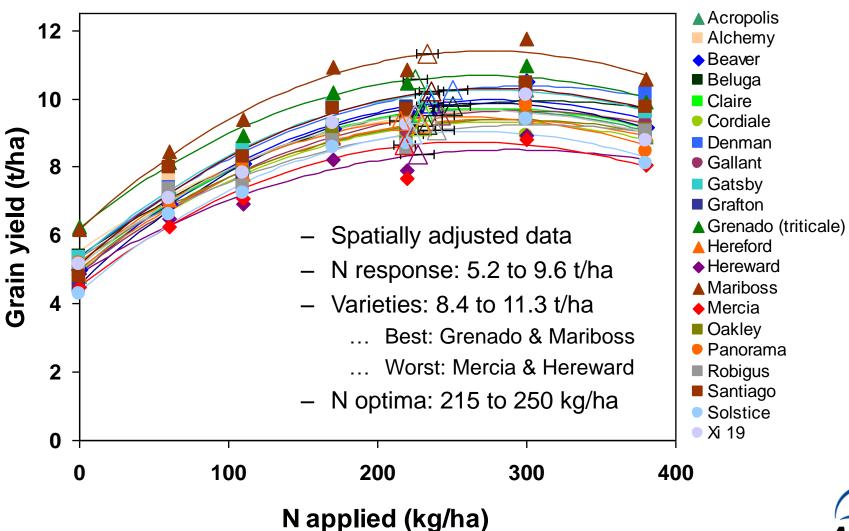
- $21 \times 7 \times 3 = 441 \text{ plots}$
 - Large experiments .. >1 ha
 - Triticale had guard plots
- 5 sites
 - 2 in 2011 & 3 in 2012
- Fitted N responses
 - Linear plus Exponential curve
 - \dots Y = A + B.R^N +C.N
 - ... Common R for all varieties
- Spatial patterns tested and 'removed'.

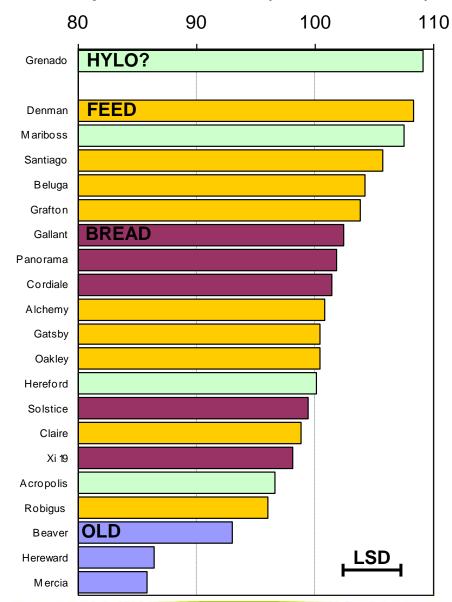
Measurements

- Grain yield ... & Optimum N by combine
- **Protein** by NIR
- N Harvest Index & N uptake from grab samples

Other possible indicators:

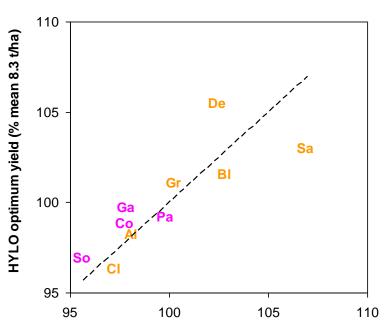
- Canopy reflectance by 'Crop Circle'
- Light interception by Sunscan
- Canopy temperature by infra-red
- **Height** by manual measurement
- **Senescence** by visual score, one date
- **Lodging** by visual score, one date





Yields at Terrington 2011 ... common 'r' 0.99875

Mean Optimum Grain Yield (% mean 8.53 t/ha)

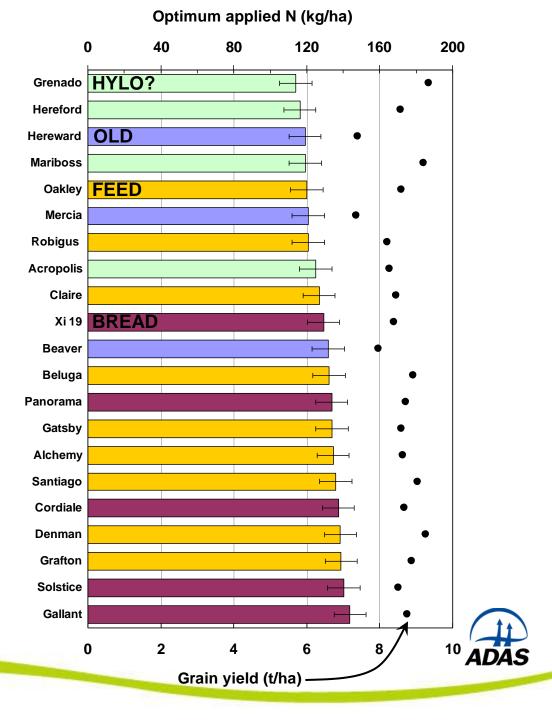


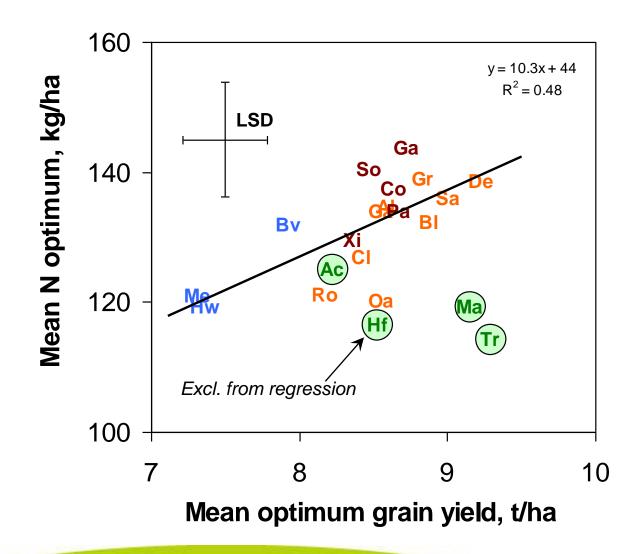
Five-site analysis

Optimum Grain Yield

- Variety Probability = <0.001
- Range 7.3 to 9.3 t/ha
- LSD 0.57 t/ha

Compared to RL 2013-14




Five-site analysis:

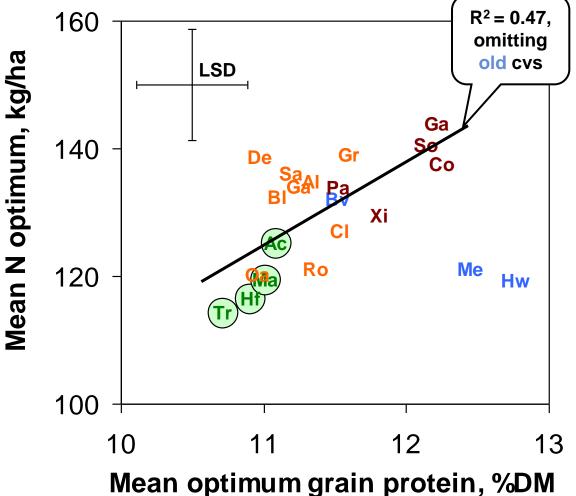
N optimum

- Variety Probability = 0.016
- Range 114 to 144 kg/ha
- LSD 17.6 kg/ha

Five-site analysis – yields and N optima

Four groups:

- L-Y L-O
 - Old cvs
- M-Y H-O
 - New bread cvs
- H-Y H-O
 - New feed cvs
- H-Y L-O
 - Mariboss & Triticale



Grain Protein

Grain Protein – Five-site analysis & summary

Protein responses

- Affected by 'odd' weather
- Some poor model fits
- Evidence of cross-over, but often parallel

Opt. grain proteins

Variety effect

...
$$P = < 0.001$$

- LSD 0.78 %
- Range 10.7 to 12.8 %DM
- Vary according to type
- Low protein varieties have low optima.

... despite higher yields

Other Measurements

- Leaf chlorophyll ... 'SPAD' in May & June
 - No significant variety effect
- Canopy reflectance ... 'Crop Circle' in May
 - P=0.001. Hereford low, Grenado high
- Light interception ... by Sunscan in June
 - P=<0.001. Hereford low, Grenado & Mariboss high
- Canopy temperature ... by infra-red
 - No significant variety effect
- **Height** ... in late June
 - P=<0.001. Grafton low, Grenado high
- N harvest index
 - P=0.02. Cordiale & Denman high, Grenado low
- Senescence ... visual score in July
 - P=0.006
 - Cordiale & Gallant early, Alchemy & Mariboss late.

Summary despite 2 odd years

Inter-site consistency in variety effects

- Grain yield ... significant differences ... as expected from HGCA RL
- ALSO ... Optimum N .. range 30 kg/ha N
 - ... Grenado, Mariboss & Hereford generally had good yields and low N optima
 - ... Oakley was best of RL varieties .. also had lowest protein
 - ... Mercia & Hereward had low N optima ... & low yields

Conclusion for wheat breeders & testers

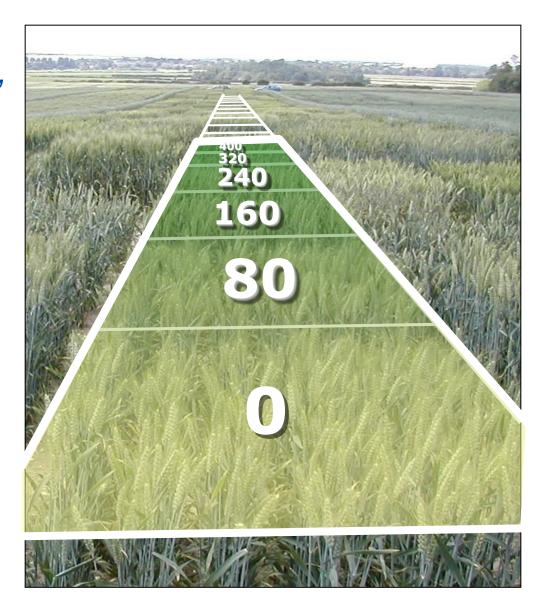
- HYLO wheat varieties do exist ... & can be detected
- But not amongst Recommended List varieties ... esp. breadmaking types
- Low grain protein may be indicative ... other traits not convincing

Further work

- New trial methodology ...
- (Complete analysis of Oilseed Rape experiments).

Idea for improved trial design: 'Opti-plots'

Aim:


- Direct determination of N optima on all RL candidates
- Without increasing seed requirements

Smaller plots

- Systematic N treatments ?
- Special machinery ?
- New statistics ?

TSB Agronomics project

- Testing Optiplots 2014-2016.

Thank you

