

WGIN 5 (July 2024-June 2029)

The partners

Department for Environment Food & Rural Affairs

80% - Hexaploid wheat, AABBDD

The underutilised cereal species

10% Triticale, AABBRR UK crop 2024 <0.1%

WGIN 5 – The science

We aim to

- further improve the resource use efficiency of the UK wheat crop
- enhance the crops intrinsic resistance to pests and pathogens – thereby reduce overall reliance on pesticide applications
 - improve the wheat crops adaptability to the predicted impacts of climate change
- devise new ways to reduce the environmental impacts of the UK wheat crop

WGIN 5 – The Methods

New Germplasm Collections – Watkins durum, self-fertile triticale Established Germplasm collection - Watkins, NIFTYR

Established mapping populations – Paragon x elites Paragon x Gediflux

Genetics & Field trialling – GWAS, BP mapping popⁿ

Precision Breeding – CRISPR / Cas9

Virus and virus vector diagnostics

Climate change modelling to predicting future UK abiotic / biotic threats + compound risks + uncertainties

WGIN 5 – The Targets

Department for Environment Food & Rural Affairs

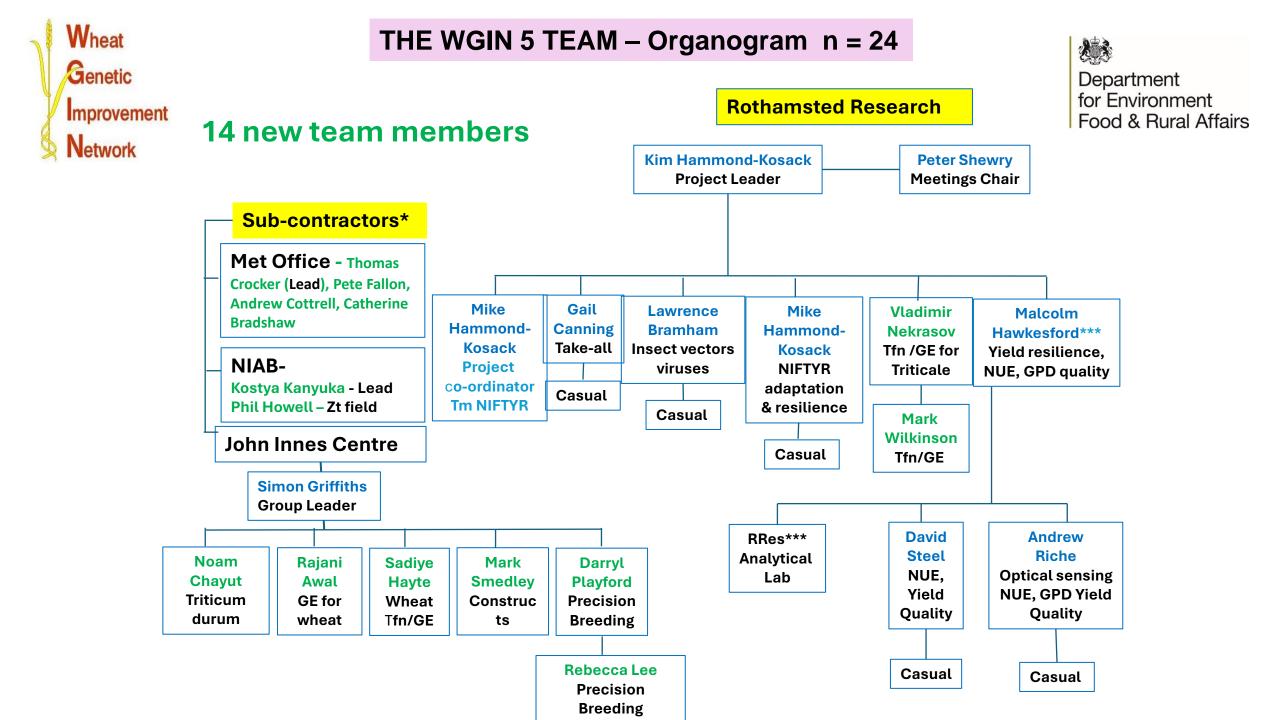
Wheat - Experimental Breeding by GE focused on Ancestral groups 1,3,4,6 and 7 (not previously used in modern breeding)
GE for conversion to Green Revolution alleles - making semi-dwarfs, heat tolerance and high protein grain

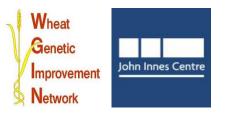
Triticale – Establish Precision Breeding by GE - reducing plant height and grain contents of non-starch polysaccharides

Durum – Pre-breeding activities by developing Watkins germplasm resources and UK climate adaptation trials

Wheat, durum and triticale - resource use efficiency – Grain Protein Deviation (GPD) – current and older germplasm

WGIN 5 – The Targets

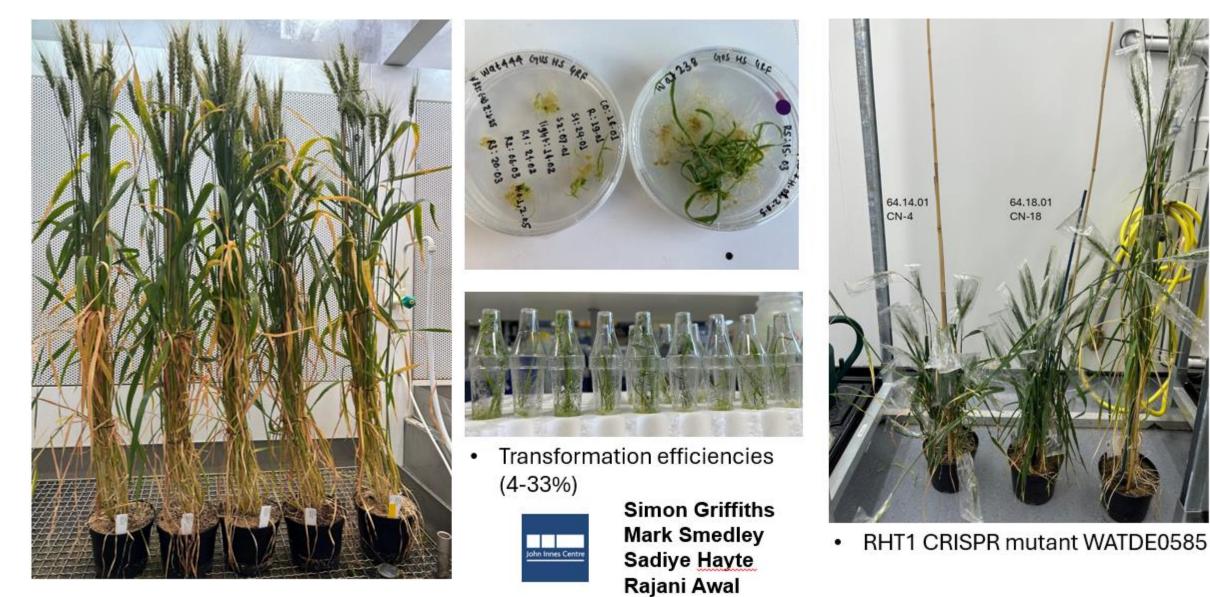



Wheat - Biotic treats – NEW cereal viruses + insect vectors, stem rust UK arrival – by modelling

Septoria leaf blotch resistance - germplasm screening – two new germplasm collections

Improving root system health Take-all root resistance – NIFTYR collection (*T. monococcum* interogression)

Adaptation to climate change – which new biotic targets?


Experimental breeding by GE for Watkins wheat lines in 5 ancestral groups

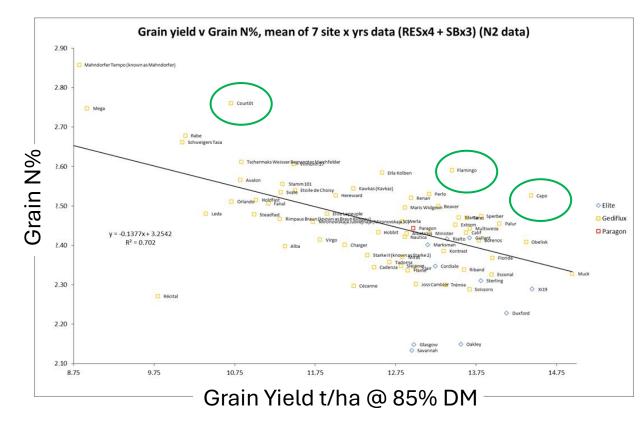
Department for Environment Food & Rural Affairs

Constructs Prepared for Chosen Targets

	Trait	Gene	Why?	Required edit
RIN-1 RIN-B16 RIN-D16 RIN-D16 RIN-B16 RIN-B16 RIN-D16	Height	RHT-1	Reduce ^{1.} 2. lodging ^{3.}	Decoupling N terminal DELLA from C terminal GRAS (K/O) C to T = early stop codon (Base Editing) Writing an early stop codon(Prime Editing)
	Flowering time	PPD-1	Adapt to UK season	Reduce PPD-B1 copy number
	Grain colour	R	Prevent sprouting	Restore reading frame
soft hard	Grain texture	PIN	Suitable for leavened bread	Remove whole gene/s

Transformation of Selected Watkins Lines - details

Department for Environment Food & Rural Affairs


> 64.04.02 CN-4

Grain Protein Deviation (GPD)

WP3.1 Trait - Resource use efficiency

Older lines, showing greater variation in GPD than modern lines

 Trait and gene discovery through selected biparental and NAM populations

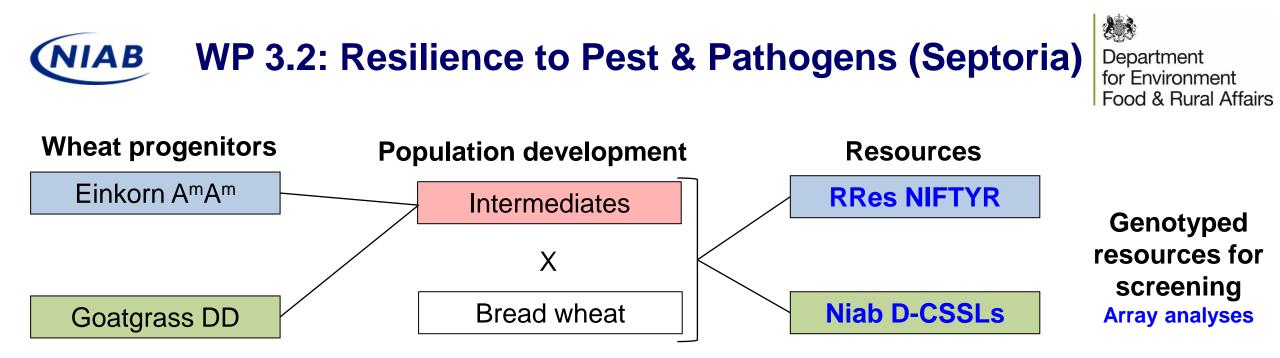
Elite Parents

- 4 populations, Hereward x Malacca, Paragon x Courtot, Beaver x Soissons, Spark x Rialto
- Seed multiplied at JIC and Rothamsted over 2 years
- 2 yrs (harvest 2027 & 28) yield plots
- Scoring of traits related to grain filling
- Genotype RILs (Bristol)
- GWAS analysis

Older, post green-revolution parents

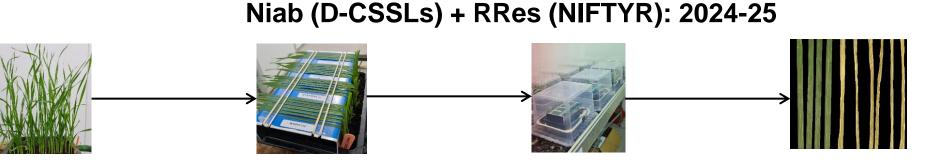
- 2 populations, Flamingo x Paragon, Capo x Paragon
- Seed multiplied at JIC and Rothamsted over 3 years
- 2 yrs (harvest 2028 & 29) yield plots
- Genotype RILs (Bristol)
- GWAS analysis

WP3.1 Resource Use Efficiency - details


GPD Benchmarking field trials

- To determine GPD variation in a 3 year benchmarking field experiment
- 16 elite wheat lines (six group 1, three gp 2, two gp 3, two soft gp 4 and three hard gp 4) plus 1 triticale and 1 durum
- 2 levels of N 125 & 250 kg/N
- Utilise the trial to evaluate the potential of a high throughput GPD screen, **measuring grain N** as an indicator of GPD

Field Experiment, 20/01/25


All developed through previous long-term funding:

WISP / DFW (D-CSSLs) and WGIN3/WGIN4 (NIFTYR)

Genotyped using Axiom 35k (D-CSSLs) and TaNG 42k (NIFTYR) SNP-arrays

Donors MDR308 (A^mA^m), Ent-336 / Niab SHW-041 (DD), all in Paragon background

WP 3.2: Resilience to Septoria - details

2-3 weeks after sowing, leaves detached from seedlings and inoculated

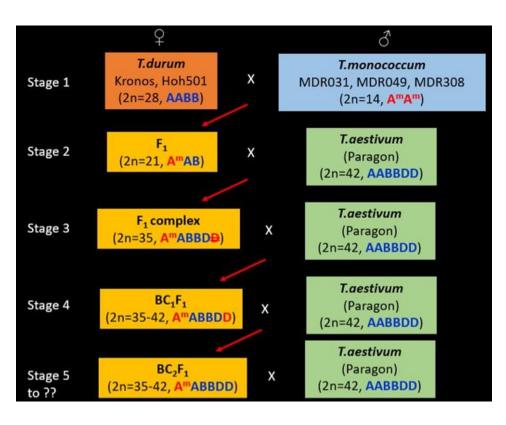
NIAB location in Devon: high STB, low YR; 3 years of field testing

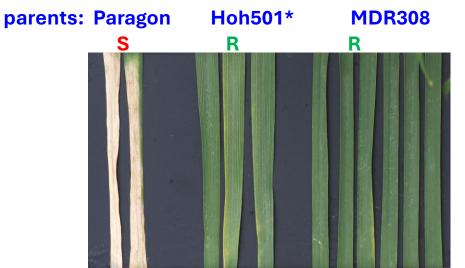
Robust field screening against natural infection

CSSL replicated trials planted autumn 2024 (M7: completed) Trial ongoing to produce results \rightarrow M26 Retest best lines + NIFTYR material in subsequent years

Kostya Kanyuka Phil Howell

Department for Environment Food & Rural Affairs


Controlled environment screening against STB isolates


Transferring Zymoseptoria Resistance from Diploid to Hexaploid Wheat

Department for Environment Food & Rural Affairs

- Triticum monococcum MDR308 (aka DV92) exhibits complete resistance to Zymo
- most likely R gene based Tmon MDR308 gene mapped to Chr7A^mS (telomere end) (Hai-Chun Jing, WGIN1)
- crossing MDR308 with hexaploid wheat: introgression could result in Zymo R in bread wheat
- crosses successful only when using T. durum (Hoh501) as a bridging species:

- 2 fertile BC1F1 lines generated from MDR308 & Hoh501
- **50 NILs** (near isogenic lines) generated from these
- all tested in multiple Zymo attached leaf assays with IPO323 (standard Zymo strain), but also Zt116, one of the most virulent isolates to date:
- of the 3 parent cultivars, Paragon is fully susceptible while both Hoh501 and MDR308 are fully resistant

*most likely nonhost resistance

WP 3.2: Resilience to Septoria in NIFTYR lines - details

Department for Environment Food & Rural Affairs

- 6 highly resistant NIFTYR lines
- 4 with moderate resistance
- 7 with delayed susceptibility
- 3 hyper susceptible

Outcome:

susceptibility

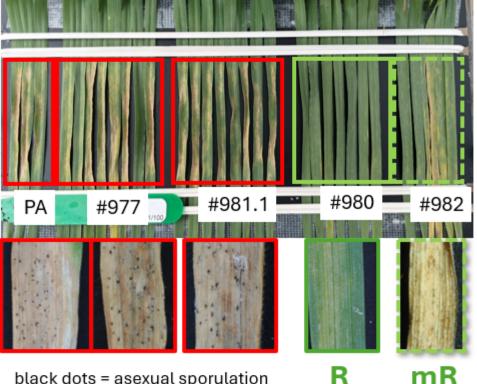
resistance

- T.mon MDR308
 Introgression has been successful to generate Zymo resistant hexaploid wheat

 Next:
- evaluate all R and some S lines under field conditions (NIAB, K.Kanyuka, WGIN5)
- use GFP-Zymo strain(s) to evaluate R mechanisms
- use TaNG genotyping to evaluate lines for introgressed segments
- skim-sequence all R and some S lines

Paragon

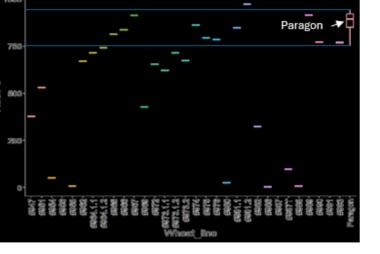
Diseased Area


75

50

25

15


18

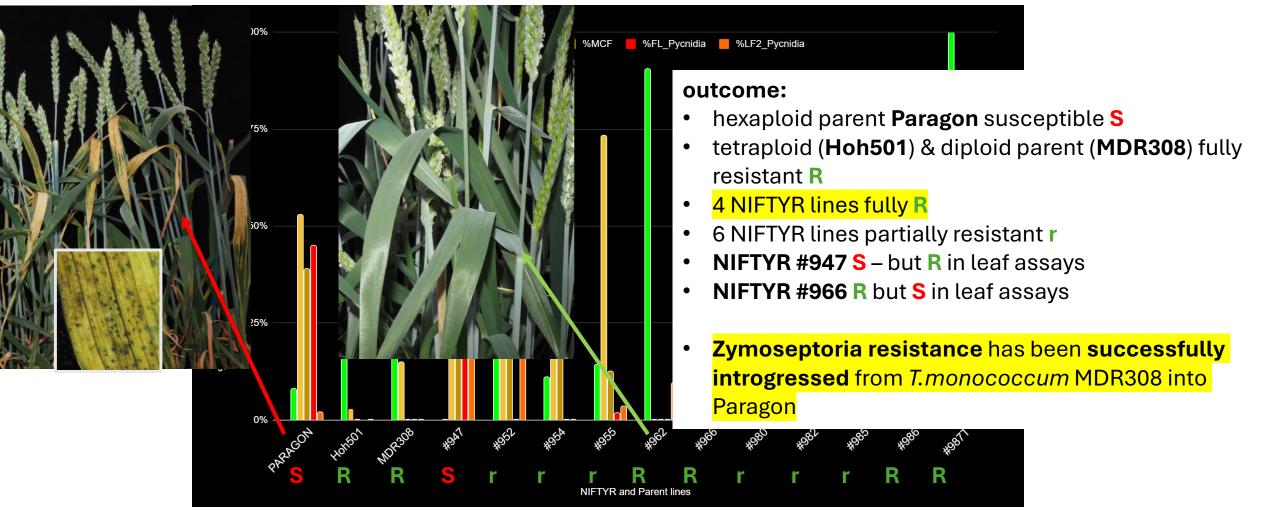
black dots = asexual sporulation structures (**pycnidia**)

attached leaf assays:

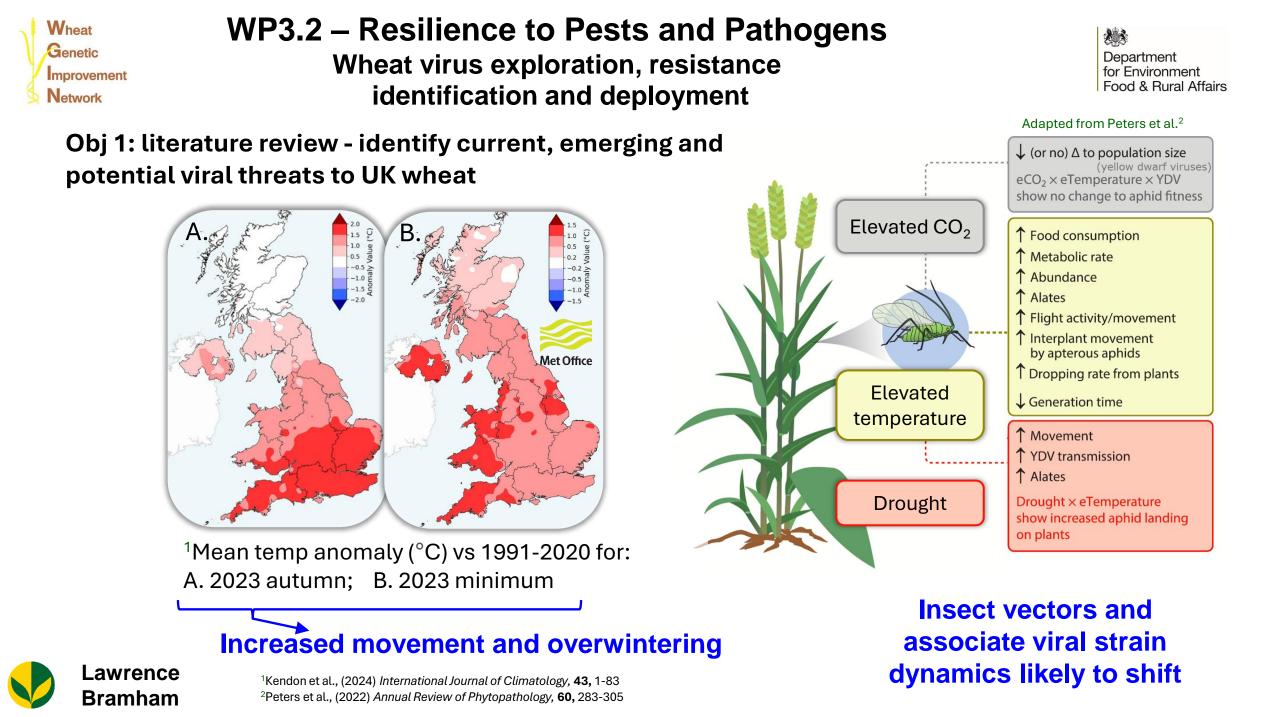
- PA, introgressed NIFTYR lines #977 & 981.1 susceptible
- NIFTYR #980 fully resistant no bleaching, no pycnidia
- NIFTYR #982 partially resistant (mR)/ slowed disease progression

21

Day post-inoculation


area under disease progression curves:

24



Spraying of maturing plants (GS49-59) with Zymoseptoria Zt116 in controlled environment

- **11 NIFTYR lines** (10**R**, 1**S**) selected from attached leaf assay results
- up to 24 plants/line grown under CE
- all plants **sprayed with Zt116** (10⁷spores/ml) 46d after sowing when flagleaves fully extended for all lines
- GS varied between 49 to 59
- Zymo symptoms emerged from 4d post infection

Department for Environment Food & Rural Affairs

WP3.2 – Resilience to Cereal Viruses

Literature review (~150 articles) - identify current, emerging and potential viral threats to UK wheat

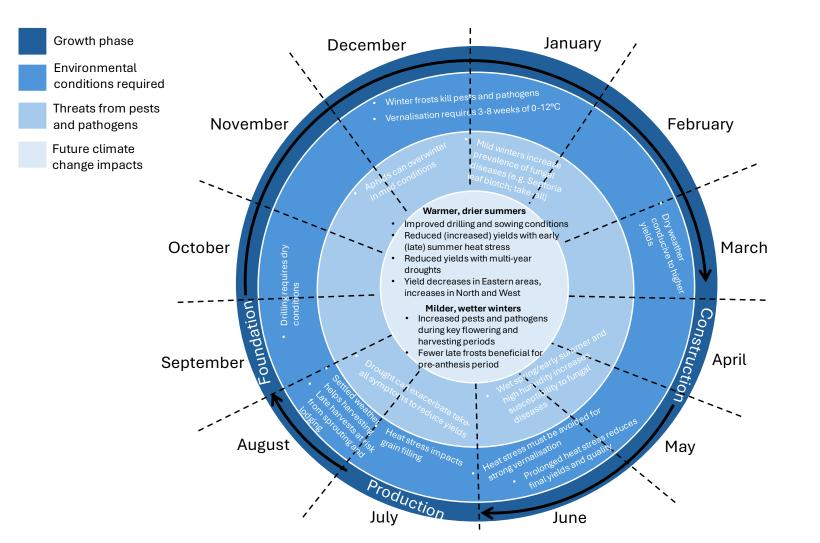
- Wheat hosts c.55 viruses of concern identified
- Core vectors = hemipteran insects (aphids, leaf/plant hoppers)
- **16 viruses of interest (VOIs) identified with impact on wheat** yield, incidence in UK or near-Europe, and vector component (hemipteran n=8):

BYDV remains most important, but **BVG and WDV** highest on "WGIN5 VOI watchlist "

Lawrence **Bramham**

	Virus	Acronym	Vector group	Primary vector	Virus in UK?	Vector in UK?	Virus in Europe?	Vector in Europe?
/	Barley virus G	BVG	Aphids	R.padi	Perhaps, unconfirmed records	Yes	Yes	Yes
	Barley/Cereal yellow dwarf virus	B/CYDV	Aphids	R.padi	Yes	Yes	Yes	Yes
	Cocksfoot streak virus	CSV	Aphids	Myzus persicae	Yes, but impactful strain unconfirmed	Yes	Yes	Yes
	European wheat striate mosaic virus	EWSMV	Leafhoppers	J.pellucida	Yes	Yes	Yes	Yes
	Festuca leaf streak virus	FLSV	Leafhoppers	J.pellucida	Unknown	Yes	Yes	Yes
	Wheat dwarf virus	WDV	Leafhoppers	Psammotettix alienus	Perhaps, unconfirmed records	Yes	Yes	Yes
	Barley yellow striate mosaic virus	BYSMV	Planthoppers	Laodelphax striatellus	Unknown	Perhaps, unconfirmed	Yes	Yes
	Maize rough dwarf virus	MRDV	Planthoppers	Laodelphax striatellus	Unknown	Perhaps, unconfirmed	Yes	Yes

e.g. Rhopalosiphum padi


e.g. Javesella pellucida

WP3 Establishing relevant climate hazards for WGIN activities

Department for Environment Food & Rural Affairs

Desk-based study into relevant climate hazards for wheat and other WGIN crops

WP3.2 Climate influences on biotic hazards to WGIN crops - details

- Majority of work complete and drafting of outputs in progress
- Work will inform further analysis to support WGIN deliverables

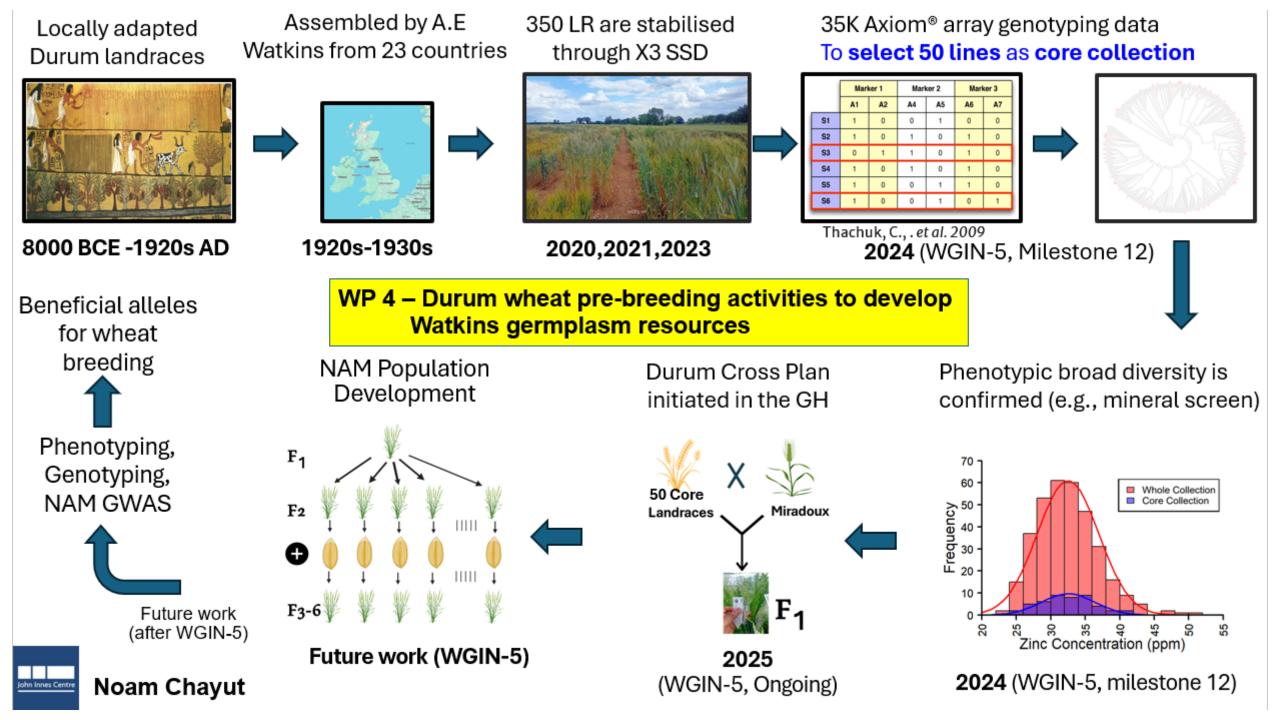
Tom Crocker Andrew Cottrell

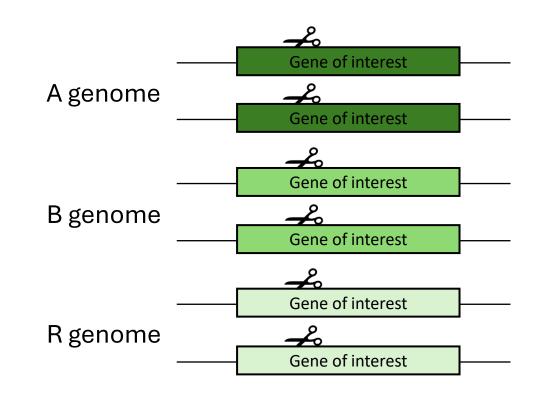
	Milder, wetter winters	Hotter, drier summers
Biotic factors ²	 Following diseases are exacerbated by these conditions: Black (Stem) Rust (<i>Puccinia graminis</i>) Brown (Leaf) Rust (<i>Puccinia triticina</i>) Bunt/Stinking Smut (<i>Tilletia tritici</i>) Barley Yellow Dwarf (<i>transmitted by aphids</i>) Eyespot (<i>Oculimacula yallundae</i>) ***Septoria Leaf Blotch (<i>Mycosphaerella graminicola</i>)*** ***Take-all (<i>Gaeumannomyces graminis</i>)*** 	Following diseases are hindered by these conditions: • Black point (<i>Alternaria</i> and <i>Cladosporium</i>) • Ergot (<i>Claviceps</i> <i>purpurea</i>) • Seedling Blight, Ear Blight, Foot Rot (<i>Fusarium</i>) ³ • Sharp Eyespot (<i>Cetrobasidium cereale</i>) • Yellow (Stripe) Rust (<i>Puccinia striiformis</i>)
		Following diseases are exacerbated by these conditions: • Brown (Leaf) Rust (<i>Puccinia triticina</i>) • Foot Rot (<i>Cochliobolus</i> <i>sativus</i>) • Leaf and Glume Blotch (<i>Phaeosphaeria nodorum</i>)

WP4: The underutilised cereal species

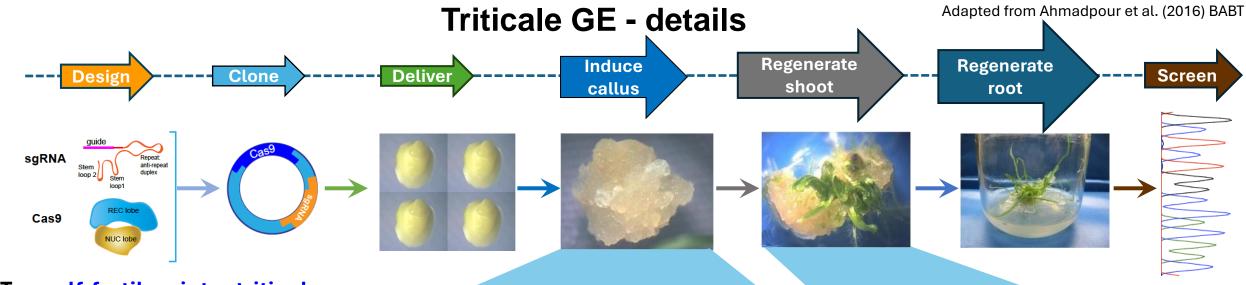
Department for Environment Food & Rural Affairs

10% Durum wheat AABB UK crop 2024 ? > 0%


10% Triticale, AABBRR UK crop 2024 <0.1%

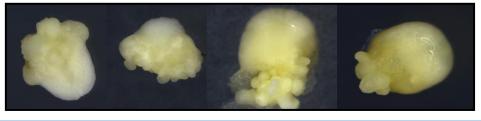


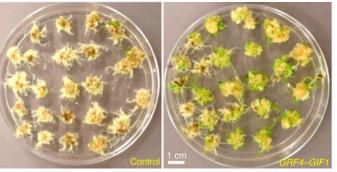
Triticale – Establish Precision Breeding by GE (CRISPR/CAS)



Triticale, an important feed grain crop in the UK

Triticale combines the yield potential and grain quality of wheat with the disease and environmental tolerance of rye




Ten self-fertile winter triticale cultivars were provided by Geert Haesaert (University of Ghent, Belgium)

Initiation of embryogenic callus using triticale immature embryos (cv. Lumaco)

 We are in process of establishing triticale transformation in tissue culture using immature embryos from the ten cultivars.
 We are designing CRISPR/Cas constructs for targeting *RHT-1*, *GT43_2* and *GT47_2* genes. GRF4-GIF1 chimeric morphogenic regulator dramatically enhances wheat transformation efficiency

Debernardi et al. (2020) Nature Biotechnololgy

Vladimir Nekrasov Mark Wilkinson

Outreach activities

Joint GINs webpage – 'Defra Crop Genetic Improvement Platform' https://defracropgenetics.org/

WGIN website - http://www.wgin.org.uk/ - under review

WGIN stakeholder event – Wednesday 5th Feb 2025, BASIS points registered – https://www.eventbrite.co.uk/e/22nd-wgin-stakeholders-meeting-2025-on-line-registrationtickets-1137836472519 - open till 5th Feb

Hybrid event at JIC 9.45 am – 4.00 pm (with 3 breaks) ~ 50 in person / ~ 110 online

2 external talks - AHDB, ADAS, 10 talks on WGIN5 project

Fireside Q & A on 'Climate Change from the Farmers' perspective', involving two farmers in conversation with the leader of the BOFIN group

Attendees ~25% farmers / farm managers and ~ 20% from commercial wheat breeding companies

Total attendees ~160

WGIN 5 – The Social Values

Understanding of employment and skills issues and shortages in the research sector - British Society for Plant Breeding

Delivery of training schemes and programmes to address any identified skills gaps and under-representation in the workforce for the contract - Gatsby Foundation Plant Sciences Summer Schools (GFSSS) programme, York + summer Rootstock event - 23rd July, 3.5 hr, Cambridge 45 UK based undergraduate students

Support the contract workforce by providing career advice and opportunities for in-work progression and career development

WGIN5 - Additional information

3 year PhD student Anisa Blower (**based at NIAB**, registered at University of Nottingham, funded through BBSRC CTP-SAI scheme and The Morley Agricultural Foundation) has carried out much of the **Septoria leaf blotch** preliminary screening and will help with data gathering from the WGIN 5 2024-25 field trial

A year in industry placement undergraduate student working in the Genetic Resources Unit at JIC is focussing on WGIN5 Durum objective Funds: JIC Year in Industry Title: "*Nutritional quality of traditional and modern wheat varieties*"

Potential WGIN5 aligned project in FY 25/26 Investigating wheat seed longevity association with climate **Met Office** collaboration with **Noam Chayut (JIC**) Funding from Defra FFNE service. (Still to be confirmed)

WGIN 5 Mission statement

Improving the efficiency, resilience, adaptation and sustainability of the wheat crop and alternative cereals through genetics, precision breeding and targeted trait analysis