

Wheat Genetic Improvement Network

Drought tolerance

WGIN Stakeholders meeting Rothamsted Research 27 November 2012

Pedro Carvalho, John Foulkes

Drivers for increasing drought tolerance and WUE

- 30% of UK wheat on drought-prone land, losses are 1-2 t ha⁻¹ = >£50M per year.
- With climate change summer rainfall will decrease, potentially increasing these losses.
- Improving WUE will decrease crop water use in non-drought years, increasing water for:
 - use in irrigating other crops
 - increasing water flows in rivers and aquifer recharge.

Impact of drought on UK wheat yields

Distribution of available water

to 1.2 m in UK wheat

Gleadthorpre Notts AWC = 140 mm

Rainfall contour map

Foulkes et al. 2001, 2002, JAg Sci; FCR 2007

How will UK weather change?

- Summer rainfall to decrease by 11 27% by 2080s; decrease 40% in S. England, less change in N. Scotland.
- Average summer temp. to rise by 3 4° C by 2080s; changes greatest in S. England (2.2 6.8°C) and least in N. Scotland (1.2-4.1°C).
- Sea levels are expected to rise by 36 cm by the 2080s.
- Extreme weather events are likely to become more common.

Predictions based UK Climate Projections (UKCP09)

WGIN Drought tolerance (2009-14) OBJECTIVES

- Identify traits for WUE and drought tolerance (DT) in elite winter wheat varieties. (*Yrs 1-2*)
- Identify QTLs for WUE and DT traits using one DH pop in an elite background. (*Yrs 2-3*)
- Develop one new DH pop for UK drought research. (Yrs 2-4)

Traits associated with main drivers of yield under drought

Yield = WU x WUE x HI

OPTIMIZE WUE

WUE of leaf photosynthesis
Low ^{13/12}C discrimination

MAXIMIZE WATER CAPTURE

Increase root density at depth
Distribute roots deeper
Access to water by roots indicated by cooler canopy

MAXIMIZE HARVEST INDEX

- Pre-antheis partitioning to stem CHO reserves
- Functional stay green

EARLINESS

- Extend stem elongation phase
- Early onset GS31

WGIN Objective 9.1 Trait Identification

Drought tolerance trials 2009-10 & 2010-11

Split plot design (3 reps): plot size 1.6 x 12 mMain plot:Fully irrigated (trickle irrigation)Unirrigated

Split plot (variety):

- 1. Avalon *
- 2. Beaver
- 3. Cadenza *
- 4. Cappelle Desprez/Sterling
- 5. Cordiale
- 6. Glasgow
- 7. Hereward *
- 8. Hobbit
- 9. Istabraq
- * Common with NUE trial

- 10. M. Widgeon *
- 11. Oakley *
- 12. Panorama
- 13. Paragon *
- 14. Rialto
- 15. Savannah
- 16. Soissons
- 17. Xi 19 *
- 18. Zebedee

Sutton Bonington 2009-10

Grain yield responses to Irrigation

Unirrigated GY t/ha

Rainfall (mm)				
	2010 LTN	2010 LTM 75-09		
Jan	33	54.1		
Feb	41.6	43.4		
Mar	36	45.7		
Apr	24	44.4		
May	18.2	45.6		
Jun	69.2	58.7		
Jul	42.6	49.8		

Irrigated vs Unirrigated 19 July

Sutton Bonington 2010-11

Grain yield responses to irrigation

Unirrigated GY t/ha

	Rainfal (mm) 2011	LTM 75- 10
January	33.0	53.4
February	44.6	44.0
March	1.2	54.1
April	23	43.4
May	27.8	45.7
June	45.4	45.6
Julv	17.8	49.8

Irrigated vs Unirrigated 11 July

Wheat

Genetic

Network

Improvement

Drought tolerance index: (Y_{Dr}/Y_{Irr}) / (mean Y_{Dr} / mean Y_{Irr})

Network

Water use efficiency: definition and measurement

- Water-use efficiency (WUE) is the ratio of aboveground dry matter production to evapotranspiration.
- ¹³C/¹²C isotope ratio of fixed CO₂ can be used as an indicator of WUE.
- Low discrimination against ${}^{13}CO_2 \rightarrow high WUE$.

Δ^{13} C vs grain yield in 18 wheat cultivars

❖ Grain △¹³C positively associated with yield under drought – indicator of ability to access water
 ❖ Trade-off between WUE and season-long water use

Sutton Bonington Mean 2009-10 & 2010-11

Oxygen isotope ratio technique ~ <u>leaf transpiration</u>

• ¹⁸O/¹⁶O ratio determined by enrichment in the leaf water due to transpiration.

• Leaf water enriched due to preferential loss of the lighter $H_2^{16}O$ during evaporation.

• An increase in leaf transpiration decreases leaf $T^{o}C$ (hence intercellular vapour pressure) resulting in less $H_2^{18}O$ enrichment at the evaporating site.

Relationship between Δ^{13} C and Δ^{18} O in 18 wheat cultivars (mean 2010 and 2011)

Other traits correlations: Stem WSC @ GS61+9d

Grain yield versus stem WSC reserves

Sutton Bonington 2009-10

Sutton Bonington 2010-11

Wheat

Genetic

Network

Improvement

0 1 2 3 4 5 6 7 8 9 10

Flag leaf senescence score

Fitting the senescence data

 $score = p0 + p1*(1 - \exp((-p2*STA/p1)) + (10 - p1 - p0/(1 + \exp(-4*p4(STA - p5)/(10 - p1 - p0))))$

- score : visual senescence score
- **STA** : thermal time after anthesis (°C.days)
- **p0** : score at anthesis
- p1 : score at the end of the slow phase
- p2 : max rate of the slow phase
- p4 : max rate of the rapid phase
- **p5**: date at which p4 is reached

Other traits correlations: Flag leaf senescence

Wheat Genetic Improvement Network

Grain yield versus Onset of Senescence

Sutton Bonington 2009-10

Sutton Bonington 2010-11

Traits summary

Estimated value of traits to avoid or minimise effects of drought in UK

Variety character	How it might work	Value
High Δ^{13} C grain	Captures extra water	High
Flag leaf 'stay- green'	Extends grain filling during late drought	High
Low canopy T ^o C/ deep roots	Captures extra water	High
High stem sugars	Buffers effects of post-flowering drought on grain filling.	Moderate
Early flowering	Advances grain filling before the drought risk period.	Neutral
Awns	Use less water per unit growth.	Slight

WGIN Objective 9.2 QTL Detection

2010-11 and 2011-12 expts

- Rialto x Savannah DH population for phenotying for yield physiological traits (94 lines and 2 parents)
- 2 sites: Nottingham irrigated & unirrigated; JIC unirrigated
- Target traits
 - Δ^{13} C grain
 - senescence kinetic
 - stem WSC

Δ ¹³C vs grain yield: Savannah x Rialto DH 2010-11

High WUE

L39

- Low WUE

L47

Rialto x Savannah DH exp 2011-12

	Rainfall (mm)	
	2012	LTM 75-09
anuary	54.2	54.3
ebruary	13.2	44
March	24.4	46.2
April	111.4	46.8
May	26.2	44.3
une	110.6	58.7
ulv	107 1	49 8

Preliminary Conclusions

- Consistent differences in Drought Tolerance Index identified amongst panel of 18 cultivars.
- Ability to access water appears to be a key driver for productivity under UK drought.
- High Δ¹³C correlated with grain yield under drought. Physiological basis ~ increased stomatal conductance, deeper roots?
- Measurement of stable isotopes in plant dry matter may be a useful phenotypic tool for speeding up breeding
 - Grain $\Delta^{13}C$
 - Flag leaf Δ^{18} O
- Work is ongoing to:
 - identify opportunities to break linkage between WU and WUE
 - develop high-throughput screens for breeding
 - Understand the genetic basis of drought tolerance and WUE traits (QTL detection)

WGIN Objective 9.3 Develop SSD Pop

- Paragon x Garcia (contrasting for drought tolerance traits)
- Population segregating for *Ppd1a*:

• use WGIN resource to select against *PpdD1a* - ie make the pop photoperiod sensitive.

keep the pop large, so we can have flowering time strata and perform analysis within them

• F3 sown in October 2012, population is in excess of 350 lines

The University of Nottingham

Jayalath DeSilva

PhD student: Yadgar Mahmood

Simon Griffiths Simon Orford Luzie Wingen

